Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Osculating Spaces of Varieties and Linear Network Codes (1210.7961v3)

Published 30 Oct 2012 in math.AG, cs.IT, and math.IT

Abstract: We present a general theory to obtain good linear network codes utilizing the osculating nature of algebraic varieties. In particular, we obtain from the osculating spaces of Veronese varieties explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersects in the same dimension. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possible altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector space is sufficiently large. The obtained osculating spaces of Veronese varieties are equidistant in the above metric. The parameters of the resulting linear network codes are determined.

Citations (8)

Summary

We haven't generated a summary for this paper yet.