Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

W- algebras and Duflo Isomorphism (1210.7759v2)

Published 29 Oct 2012 in math.QA and math.RT

Abstract: We prove that when Kontsevich's deformation quantization is applied on weight homogeneous Poisson structures, the operators in the $\ast-$ product formula are weight homogeneous. We then consider the linear Poisson case $X=\mathfrak{g}\ast$ for a semi simple Lie algebra $\mathfrak{g}$. As an application we provide an isomorphism between the Cattaneo-Felder-Torossian reduction algebra $H0(\mathfrak{g},\mathfrak{m},\chi)$ and the $W-$ algebra $(U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{m}\chi)\mathfrak{m}$. We also show that in the $W-$ algebra setting, $(S(\mathfrak{g})/S(\mathfrak{g})\mathfrak{m}\chi)\mathfrak{m}$ is polynomial. Finally, we compute generators of $H0(\mathfrak{g},\mathfrak{m},\chi)$ as a deformation of $(S(\mathfrak{g})/S(\mathfrak{g})\mathfrak{m}_\chi)\mathfrak{m}$.

Summary

We haven't generated a summary for this paper yet.