Papers
Topics
Authors
Recent
2000 character limit reached

A Dichotomy Theorem for Homomorphism Polynomials

Published 29 Oct 2012 in cs.CC | (1210.7641v1)

Abstract: In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H. We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P). We also demonstrate the hardness over the rational field of cut eliminator, a polynomial defined by B\"urgisser which is known to be neither VP nor VNP-complete in the field of two elements, if VP is not equal to VNP (VP is the class of polynomials computable by arithmetic circuit of polynomial size).

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.