Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Managing sparsity, time, and quality of inference in topic models (1210.7053v2)

Published 26 Oct 2012 in stat.ML, cs.AI, cs.CV, and stat.ME

Abstract: Inference is an integral part of probabilistic topic models, but is often non-trivial to derive an efficient algorithm for a specific model. It is even much more challenging when we want to find a fast inference algorithm which always yields sparse latent representations of documents. In this article, we introduce a simple framework for inference in probabilistic topic models, denoted by FW. This framework is general and flexible enough to be easily adapted to mixture models. It has a linear convergence rate, offers an easy way to incorporate prior knowledge, and provides us an easy way to directly trade off sparsity against quality and time. We demonstrate the goodness and flexibility of FW over existing inference methods by a number of tasks. Finally, we show how inference in topic models with nonconjugate priors can be done efficiently.

Citations (2)

Summary

We haven't generated a summary for this paper yet.