Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feng-Rao decoding of primary codes (1210.6722v3)

Published 25 Oct 2012 in cs.IT and math.IT

Abstract: We show that the Feng-Rao bound for dual codes and a similar bound by Andersen and Geil [H.E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), pp. 92-123] for primary codes are consequences of each other. This implies that the Feng-Rao decoding algorithm can be applied to decode primary codes up to half their designed minimum distance. The technique applies to any linear code for which information on well-behaving pairs is available. Consequently we are able to decode efficiently a large class of codes for which no non-trivial decoding algorithm was previously known. Among those are important families of multivariate polynomial codes. Matsumoto and Miura in R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE Trans. Fundamentals, E83-A (2000), pp. 926-930 derived from the Feng-Rao bound a bound for primary one-point algebraic geometric codes and showed how to decode up to what is guaranteed by their bound. The exposition by Matsumoto and Miura requires the use of differentials which was not needed in [Andersen and Geil 2008]. Nevertheless we demonstrate a very strong connection between Matsumoto and Miura's bound and Andersen and Geil's bound when applied to primary one-point algebraic geometric codes.

Citations (24)

Summary

We haven't generated a summary for this paper yet.