Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalization of the Mehta-Wang determinant and Askey-Wilson polynomials (1210.5305v1)

Published 19 Oct 2012 in math.CO, math-ph, and math.MP

Abstract: Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $\det((a+j-i)\Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $\Pf((j-i)\Gamma(b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a $q$-analogue of the Mehta--Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.

Summary

We haven't generated a summary for this paper yet.