Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Structured Ranking (1210.4914v1)

Published 16 Oct 2012 in cs.LG, cs.IR, and stat.ML

Abstract: Many latent (factorized) models have been proposed for recommendation tasks like collaborative filtering and for ranking tasks like document or image retrieval and annotation. Common to all those methods is that during inference the items are scored independently by their similarity to the query in the latent embedding space. The structure of the ranked list (i.e. considering the set of items returned as a whole) is not taken into account. This can be a problem because the set of top predictions can be either too diverse (contain results that contradict each other) or are not diverse enough. In this paper we introduce a method for learning latent structured rankings that improves over existing methods by providing the right blend of predictions at the top of the ranked list. Particular emphasis is put on making this method scalable. Empirical results on large scale image annotation and music recommendation tasks show improvements over existing approaches.

Citations (12)

Summary

We haven't generated a summary for this paper yet.