Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial configurations in the primes (1210.4659v1)

Published 17 Oct 2012 in math.NT and math.CO

Abstract: The Bergelson-Leibman theorem states that if P_1, ..., P_k are polynomials with integer coefficients, then any subset of the integers of positive upper density contains a polynomial configuration x+P_1(m), ..., x+P_k(m), where x,m are integers. Various generalizations of this theorem are known. Wooley and Ziegler showed that the variable m can in fact be taken to be a prime minus 1, and Tao and Ziegler showed that the Bergelson-Leibman theorem holds for subsets of the primes of positive relative upper density. Here we prove a hybrid of the latter two results, namely that the step m in the Tao-Ziegler theorem can be restricted to the set of primes minus 1.

Summary

We haven't generated a summary for this paper yet.