2000 character limit reached
Szlenk and $w^\ast$-dentability indices of the Banach spaces $C([0,α])$ (1210.3696v1)
Published 13 Oct 2012 in math.FA
Abstract: Let $\alpha$ be an infinite ordinal and $\gamma$ the unique ordinal satisfying $\omega{\omega\gamma}\leq \alpha < \omega{\omega{\gamma+1}}$. We show that the Banach space $C([0,\,\alpha])$ of all continuous scalar-valued functions on the compact ordinal interval $[0,\,\alpha]$ has Szlenk index equal to $\omega{\gamma+1}$ and $w\ast$-dentability index equal to $\omega{1+\gamma+1}$.