Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Automorphism Group of a Binary Self-dual [120, 60, 24] Code (1210.2540v1)

Published 9 Oct 2012 in math.CO, cs.DM, and math.GR

Abstract: We prove that an automorphism of order 3 of a putative binary self-dual [120, 60, 24] code C has no fixed points. Moreover, the order of the automorphism group of C divides 2a.3.5.7.19.23.29 where a is a nonegative integer. Automorphisms of odd composite order r may occur only for r=15, 57 or r=115 with corresponding cycle structures 15-(0,0,8;0), 57-(2,0,2;0) or 115-(1,0,1;0), respectively. In case that all involutions act fixed point freely we have |Aut(C)|<=920, and Aut(C) is solvable if it contains an element of prime order p>=7. Moreover, the alternating group A_5 is the only non-abelian composition factor which may occur.

Citations (6)

Summary

We haven't generated a summary for this paper yet.