Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The affinely invariant distance correlation (1210.2482v2)

Published 9 Oct 2012 in math.ST, math.PR, and stat.TH

Abstract: Sz\'{e}kely, Rizzo and Bakirov (Ann. Statist. 35 (2007) 2769-2794) and Sz\'{e}kely and Rizzo (Ann. Appl. Statist. 3 (2009) 1236-1265), in two seminal papers, introduced the powerful concept of distance correlation as a measure of dependence between sets of random variables. We study in this paper an affinely invariant version of the distance correlation and an empirical version of that distance correlation, and we establish the consistency of the empirical quantity. In the case of subvectors of a multivariate normally distributed random vector, we provide exact expressions for the affinely invariant distance correlation in both finite-dimensional and asymptotic settings, and in the finite-dimensional case we find that the affinely invariant distance correlation is a function of the canonical correlation coefficients. To illustrate our results, we consider time series of wind vectors at the Stateline wind energy center in Oregon and Washington, and we derive the empirical auto and cross distance correlation functions between wind vectors at distinct meteorological stations.

Summary

We haven't generated a summary for this paper yet.