2000 character limit reached
Nuclear dimension, Z-stability, and algebraic simplicity for stably projectionless C*-algebras (1210.2237v2)
Published 8 Oct 2012 in math.OA and math.FA
Abstract: The main result here is that a simple separable C*-algebra is Z-stable (where Z denotes the Jiang-Su algebra) if (i) it has finite nuclear dimension or (ii) it is approximately subhomogeneous with slow dimension growth. This generalizes the main results of [Toms, "K-theoretic rigidity and slow dimension growth"; Winter, "Nuclear dimension and Z-stability of pure C*-algebras"] to the nonunital setting. As a consequence, finite nuclear dimension implies Z-stability even in the case of a separable C*-algebra with finitely many ideals. Algebraic simplicity is established as a fruitful weakening of being simple and unital, and the proof of the main result makes heavy use of this concept.