Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite series representations for Bessel functions of the first kind of integer order (1210.2109v1)

Published 7 Oct 2012 in math-ph, math.CA, and math.MP

Abstract: We have discovered three non-power infinite series representations for Bessel functions of the first kind of integer orders and real arguments. These series contain only elementary functions and are remarkably simple. Each series was derived as a Fourier series of a certain function that contains Bessel function. The series contain parameter $b$ by setting which to specific values one can change specific form of series. Truncated series retain qualitatively behaviour of Bessel functions at large $x$: they have sine-like shape with decreasing amplitude. Derived series allow to obtain new series expansions for trigonometric functions.

Summary

We haven't generated a summary for this paper yet.