Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator (1210.1871v4)

Published 5 Oct 2012 in stat.ME

Abstract: When an unbiased estimator of the likelihood is used within a Metropolis--Hastings chain, it is necessary to trade off the number of Monte Carlo samples used to construct this estimator against the asymptotic variances of averages computed under this chain. Many Monte Carlo samples will typically result in Metropolis--Hastings averages with lower asymptotic variances than the corresponding Metropolis--Hastings averages using fewer samples. However, the computing time required to construct the likelihood estimator increases with the number of Monte Carlo samples. Under the assumption that the distribution of the additive noise introduced by the log-likelihood estimator is Gaussian with variance inversely proportional to the number of Monte Carlo samples and independent of the parameter value at which it is evaluated, we provide guidelines on the number of samples to select. We demonstrate our results by considering a stochastic volatility model applied to stock index returns.

Summary

We haven't generated a summary for this paper yet.