Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coarsening dynamics in one dimension: The phase diffusion equation and its numerical implementation (1210.1713v2)

Published 5 Oct 2012 in nlin.PS and cond-mat.stat-mech

Abstract: Many nonlinear partial differential equations (PDEs) display a coarsening dynamics, i.e., an emerging pattern whose typical length scale $L$ increases with time. The so-called coarsening exponent $n$ characterizes the time dependence of the scale of the pattern, $L(t)\approx tn$, and coarsening dynamics can be described by a diffusion equation for the phase of the pattern. By means of a multiscale analysis we are able to find the analytical expression of such diffusion equations. Here, we propose a recipe to implement numerically the determination of $D(\lambda)$, the phase diffusion coefficient, as a function of the wavelength $\lambda$ of the base steady state $u_0(x)$. $D$ carries all information about coarsening dynamics and, through the relation $|D(L)| \simeq L2 /t$, it allows us to determine the coarsening exponent. The main conceptual message is that the coarsening exponent is determined without solving a time-dependent equation, but only by inspecting the periodic steady-state solutions. This provides a much faster strategy than a forward time-dependent calculation. We discuss our method for several different PDEs, both conserved and not conserved.

Summary

We haven't generated a summary for this paper yet.