Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of Stochastic Kronecker Graph (1210.1300v1)

Published 4 Oct 2012 in cs.SI and cs.DM

Abstract: The stochastic Kronecker Graph model can generate large random graph that closely resembles many real world networks. For example, the output graph has a heavy-tailed degree distribution, has a (low) diameter that effectively remains constant over time and obeys the so-called densification power law [1]. Aside from this list of very important graph properties, one may ask for some additional information about the output graph: What will be the expected number of isolated vertices? How many edges, self loops are there in the graph? What will be the expected number of triangles in a random realization? Here we try to answer the above questions. In the first phase, we bound the expected values of the aforementioned features from above. Next we establish the sufficient conditions to generate stochastic Kronecker graph with a wide range of interesting properties. Finally we show two phase transitions for the appearance of edges and self loops in stochastic Kronecker graph.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (1)

Summary

We haven't generated a summary for this paper yet.