Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error bounds for Metropolis-Hastings algorithms applied to perturbations of Gaussian measures in high dimensions (1210.1180v2)

Published 3 Oct 2012 in math.PR and stat.CO

Abstract: The Metropolis-adjusted Langevin algorithm (MALA) is a Metropolis-Hastings method for approximate sampling from continuous distributions. We derive upper bounds for the contraction rate in Kantorovich-Rubinstein-Wasserstein distance of the MALA chain with semi-implicit Euler proposals applied to log-concave probability measures that have a density w.r.t. a Gaussian reference measure. For sufficiently "regular" densities, the estimates are dimension-independent, and they hold for sufficiently small step sizes $h$ that do not depend on the dimension either. In the limit $h\downarrow0$, the bounds approach the known optimal contraction rates for overdamped Langevin diffusions in a convex potential. A similar approach also applies to Metropolis-Hastings chains with Ornstein-Uhlenbeck proposals. In this case, the resulting estimates are still independent of the dimension but less optimal, reflecting the fact that MALA is a higher order approximation of the diffusion limit than Metropolis-Hastings with Ornstein-Uhlenbeck proposals.

Summary

We haven't generated a summary for this paper yet.