Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable data abstractions for distributed parallel computations (1210.1157v1)

Published 3 Oct 2012 in cs.PL and cs.DC

Abstract: The ability to express a program as a hierarchical composition of parts is an essential tool in managing the complexity of software and a key abstraction this provides is to separate the representation of data from the computation. Many current parallel programming models use a shared memory model to provide data abstraction but this doesn't scale well with large numbers of cores due to non-determinism and access latency. This paper proposes a simple programming model that allows scalable parallel programs to be expressed with distributed representations of data and it provides the programmer with the flexibility to employ shared or distributed styles of data-parallelism where applicable. It is capable of an efficient implementation, and with the provision of a small set of primitive capabilities in the hardware, it can be compiled to operate directly on the hardware, in the same way stack-based allocation operates for subroutines in sequential machines.

Summary

We haven't generated a summary for this paper yet.