Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The cut-off phenomenon for Brownian motions on symmetric spaces of compact type (1210.0480v2)

Published 1 Oct 2012 in math.PR

Abstract: We prove the cut-off phenomenon in total variation distance for the Brownian motions traced on the classical symmetric spaces of compact type, that is to say: (1) the classical simple compact Lie groups: special orthogonal groups, special unitary groups and compact symplectic groups; (2) the real, complex and quaternionic Grassmannian varieties (including the real spheres and complex or quaternionic projective spaces); (3) the spaces of structures: SU(n)/SO(n), SO(2n)/U(n), SU(2n)/USp(n), and USp(n)/U(n). In each case, we give explicit lower bounds for the total variation distance DTV(mu_t,Haar) if t < tcut-off = a log n, and explicit upper bounds if t > tcut-off. This gives in particular an answer to a question raised in papers by Chen and Saloff-Coste.

Summary

We haven't generated a summary for this paper yet.