Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel-de Siebenthal discrete series and associated holomorphic discrete series (1210.0123v3)

Published 29 Sep 2012 in math.RT

Abstract: Let G_0 be a simply connected noncompact real simple Lie group with maximal compact subgroup K_0. Assume that rank(G_0) = rank(K_0) so that G_0 has discrete series representations. If G_0/K_0 is Hermitian symmetric, there exists a relatively simple discrete series of G_0, called holomorphic discrete series. Now assume that G_0/K_0 is not Hermitian symmetric. In this case, we can define Borel-de Siebenthal discrete series of G_0 analogous to holomorphic discrete series. We consider a certain circle subgroup of K_0 whose centralizer L_0 is such that K_0/L_0 is an irreducible compact Hermitian symmetric space. Let (K_0)* be the dual of K_0 with respect to L_0. Then (K_0)/L_0 is an irreducible non-compact Hermitian symmetric space dual to K_0/L_0. To each Borel-de Siebenthal discrete series of G_0, we can associate a holomorphic discrete series of (K_0). In this article, we address occurrence of common L_0-types between these two discrete series under certain conditions.

Summary

We haven't generated a summary for this paper yet.