Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded compositions on scaling invariant Besov spaces (1209.6477v2)

Published 28 Sep 2012 in math.CA and math.FA

Abstract: For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $\varphi : \realn \to \realn$ for which the composition operator $f \mapsto f \circ \varphi$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}s_{n/s,q}(\realn)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}s_{n/s,q}(\realn)$ with $0 < s < 1$ and $0 < q \leq \infty$.

Summary

We haven't generated a summary for this paper yet.