Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agents Dynamic Case Based Reasoning and The Inverse Longest Common Sub-Sequence And Individualized Follow-up of Learners in The CEHL (1209.6395v1)

Published 27 Sep 2012 in cs.AI

Abstract: In E-learning, there is still the problem of knowing how to ensure an individualized and continuous learner's follow-up during learning process, indeed among the numerous tools proposed, very few systems concentrate on a real time learner's follow-up. Our work in this field develops the design and implementation of a Multi-Agents System Based on Dynamic Case Based Reasoning which can initiate learning and provide an individualized follow-up of learner. When interacting with the platform, every learner leaves his/her traces in the machine. These traces are stored in a basis under the form of scenarios which enrich collective past experience. The system monitors, compares and analyses these traces to keep a constant intelligent watch and therefore detect difficulties hindering progress and/or avoid possible dropping out. The system can support any learning subject. The success of a case-based reasoning system depends critically on the performance of the retrieval step used and, more specifically, on similarity measure used to retrieve scenarios that are similar to the course of the learner (traces in progress). We propose a complementary similarity measure, named Inverse Longest Common Sub-Sequence (ILCSS). To help and guide the learner, the system is equipped with combined virtual and human tutors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.