Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Robust Low-Rank Representations (1209.6393v1)

Published 27 Sep 2012 in cs.LG and math.OC

Abstract: In this paper we present a comprehensive framework for learning robust low-rank representations by combining and extending recent ideas for learning fast sparse coding regressors with structured non-convex optimization techniques. This approach connects robust principal component analysis (RPCA) with dictionary learning techniques and allows its approximation via trainable encoders. We propose an efficient feed-forward architecture derived from an optimization algorithm designed to exactly solve robust low dimensional projections. This architecture, in combination with different training objective functions, allows the regressors to be used as online approximants of the exact offline RPCA problem or as RPCA-based neural networks. Simple modifications of these encoders can handle challenging extensions, such as the inclusion of geometric data transformations. We present several examples with real data from image, audio, and video processing. When used to approximate RPCA, our basic implementation shows several orders of magnitude speedup compared to the exact solvers with almost no performance degradation. We show the strength of the inclusion of learning to the RPCA approach on a music source separation application, where the encoders outperform the exact RPCA algorithms, which are already reported to produce state-of-the-art results on a benchmark database. Our preliminary implementation on an iPad shows faster-than-real-time performance with minimal latency.

Citations (10)

Summary

We haven't generated a summary for this paper yet.