Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations
Abstract: Character expansion expresses extended HOMFLY polynomials through traces of products of finite dimensional R- and Racah mixing matrices. We conjecture that the mixing matrices are expressed entirely in terms of the eigenvalues of the corresponding R-matrices. Even a weaker (and, perhaps, more reliable) version of this conjecture is sufficient to explicitly calculate HOMFLY polynomials for all the 3-strand braids in arbitrary (anti)symmetric representations. We list the examples of so obtained polynomials for V=[3] and V=[4], and they are in accordance with the known answers for torus and figure-eight knots, as well as for the colored special and Jones polynomials. This provides an indirect evidence in support of our conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.