Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divisibility by 2 of Stirling numbers of the second kind and their differences (1209.6284v3)

Published 27 Sep 2012 in math.NT

Abstract: Let $n,k,a$ and $c$ be positive integers and $b$ be a nonnegative integer. Let $\nu_2(k)$ and $s_2(k)$ be the 2-adic valuation of $k$ and the sum of binary digits of $k$, respectively. Let $S(n,k)$ be the Stirling number of the second kind. It is shown that $\nu_2(S(c2n,b2{n+1}+a))\geq s_2(a)-1,$ where $0<a\<2^{n+1}$ and $2\nmid c$. Furthermore, one gets that $\nu_2(S(c2^{n},(c-1)2^{n}+a))=s_2(a)-1$, where $n\geq 2$, $1\leq a\leq 2^n$ and $2\nmid c$. Finally, it is proved that if $3\leq k\leq 2^n$ and $k$ is not a power of 2 minus 1, then $\nu_2(S(a2^{n},k)-S(b2^{n},k))=n+\nu_2(a-b)-\lceil\log_2k\rceil +s_2(k)+\delta(k), $ where $\delta(4)=2$, $\delta(k)=1$ if $k\>4$ is a power of 2, and $\delta(k)=0$ otherwise. This confirms a conjecture of Lengyel raised in 2009 except when $k$ is a power of 2 minus 1.

Summary

We haven't generated a summary for this paper yet.