Papers
Topics
Authors
Recent
2000 character limit reached

Random k-SAT and the Power of Two Choices

Published 24 Sep 2012 in math.CO, cs.CC, and cs.DM | (1209.5313v2)

Abstract: We study an Achlioptas-process version of the random k-SAT process: a bounded number of k-clauses are drawn uniformly at random at each step, and exactly one added to the growing formula according to a particular rule. We prove the existence of a rule that shifts the satisfiability threshold. This extends a well-studied area of probabilistic combinatorics (Achlioptas processes) to random CSP's. In particular, while a rule to delay the 2-SAT threshold was known previously, this is the first proof of a rule to shift the threshold of k-SAT for k >= 3. We then propose a gap decision problem based upon this semi-random model. The aim of the problem is to investigate the hardness of the random k-SAT decision problem, as opposed to the problem of finding an assignment or certificate of unsatisfiability. Finally, we discuss connections to the study of Achlioptas random graph processes.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.