Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective bundles over toric surfaces (1209.5225v2)

Published 24 Sep 2012 in math.AT

Abstract: Let $E$ be the Whitney sum of complex line bundles over a topological space $X$. Then, the projectivization $P(E)$ of $E$ is called a \emph{projective bundle} over $X$. If $X$ is a non-singular complete toric variety, so is $P(E)$. In this paper, we show that the cohomology ring of a non-singular projective toric variety $M$ determines whether it admits a projective bundle structure over a non-singular complete toric surface. In addition, we show that two 6-dimensional projective bundles over 4-dimensional quasitoric manifolds are diffeomorphic if their cohomology rings are isomorphic as graded rings. Furthermore, we study the smooth classification of higher dimensional projective bundles over 4-dimensional quasitoric manifolds.

Summary

We haven't generated a summary for this paper yet.