Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting inequivalent monotone Boolean functions (1209.4623v1)

Published 20 Sep 2012 in cs.DS and math.CO

Abstract: Monotone Boolean functions (MBFs) are Boolean functions $f: {0,1}n \rightarrow {0,1}$ satisfying the monotonicity condition $x \leq y \Rightarrow f(x) \leq f(y)$ for any $x,y \in {0,1}n$. The number of MBFs in n variables is known as the $n$th Dedekind number. It is a longstanding computational challenge to determine these numbers exactly - these values are only known for $n$ at most 8. Two monotone Boolean functions are inequivalent if one can be obtained from the other by renaming the variables. The number of inequivalent MBFs in $n$ variables was known only for up to $n = 6$. In this paper we propose a strategy to count inequivalent MBF's by breaking the calculation into parts based on the profiles of these functions. As a result we are able to compute the number of inequivalent MBFs in 7 variables. The number obtained is 490013148.

Citations (32)

Summary

We haven't generated a summary for this paper yet.