Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconditional structures of translates for $L_p(R^d)$ (1209.4619v1)

Published 20 Sep 2012 in math.FA

Abstract: We prove that a sequence $(f_i){i=1}\infty$ of translates of a fixed $f\in L_p(R)$ cannot be an unconditional basis of $L_p(R)$ for any $1\le p<\infty$. In contrast to this, for every $2<p<\infty$, $d\in N$ and unbounded sequence $(\lambda_n){n\in N}\subset Rd$ we establish the existence of a function $f\in L_p(Rd)$ and sequence $(g*n){n\in N}\subset L_p*(Rd)$ such that $(T_{\lambda_n} f, g*n){n\in N}$ forms an unconditional Schauder frame for $L_p(Rd)$. In particular, there exists a Schauder frame of integer translates for $L_p(R)$ if (and only if) $2<p<\infty$.

Summary

We haven't generated a summary for this paper yet.