Papers
Topics
Authors
Recent
Search
2000 character limit reached

Profitable Scheduling on Multiple Speed-Scalable Processors

Published 18 Sep 2012 in cs.DS | (1209.3868v1)

Abstract: We present a new online algorithm for profit-oriented scheduling on multiple speed-scalable processors. Moreover, we provide a tight analysis of the algorithm's competitiveness. Our results generalize and improve upon work by \textcite{Chan:2010}, which considers a single speed-scalable processor. Using significantly different techniques, we can not only extend their model to multiprocessors but also prove an enhanced and tight competitive ratio for our algorithm. In our scheduling problem, jobs arrive over time and are preemptable. They have different workloads, values, and deadlines. The scheduler may decide not to finish a job but instead to suffer a loss equaling the job's value. However, to process a job's workload until its deadline the scheduler must invest a certain amount of energy. The cost of a schedule is the sum of lost values and invested energy. In order to finish a job the scheduler has to determine which processors to use and set their speeds accordingly. A processor's energy consumption is power $\Power{s}$ integrated over time, where $\Power{s}=s{\alpha}$ is the power consumption when running at speed $s$. Since we consider the online variant of the problem, the scheduler has no knowledge about future jobs. This problem was introduced by \textcite{Chan:2010} for the case of a single processor. They presented an online algorithm which is $\alpha{\alpha}+2e\alpha$-competitive. We provide an online algorithm for the case of multiple processors with an improved competitive ratio of $\alpha{\alpha}$.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.