Papers
Topics
Authors
Recent
Search
2000 character limit reached

The dichotomy of recurrence and transience of semi-Levy processes

Published 18 Sep 2012 in math.PR | (1209.3838v1)

Abstract: Semi-Levy process is an additive process with periodically stationary increments. In particular, it is a generalization of Levy process. The dichotomy of recurrence and transience of Levy processes is well known, but this is not necessarily true for general additive processes. In this paper, we prove the recurrence and transience dichotomy of semi-Levy processes. For the proof, we introduce a concept of semi-random walk and discuss its recurrence and transience properties. An example of semi-Levy process constructed from two independent Levy processes is investigated. Finally, we prove the laws of large numbers for semi-Levy processes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.