An FMM Based on Dual Tree Traversal for Many-core Architectures
Abstract: The present work attempts to integrate the independent efforts in the fast N-body community to create the fastest N-body library for many-core and heterogenous architectures. Focus is placed on low accuracy optimizations, in response to the recent interest to use FMM as a preconditioner for sparse linear solvers. A direct comparison with other state-of-the-art fast N-body codes demonstrates that orders of magnitude increase in performance can be achieved by careful selection of the optimal algorithm and low-level optimization of the code. The current N-body solver uses a fast multipole method with an efficient strategy for finding the list of cell-cell interactions by a dual tree traversal. A task-based threading model is used to maximize thread-level parallelism and intra-node load-balancing. In order to extract the full potential of the SIMD units on the latest CPUs, the inner kernels are optimized using AVX instructions. Our code -- exaFMM -- is an order of magnitude faster than the current state-of-the-art FMM codes, which are themselves an order of magnitude faster than the average FMM code.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.