Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-track Map Matching (1209.2759v1)

Published 13 Sep 2012 in cs.LG, cs.DS, and stat.AP

Abstract: We study algorithms for matching user tracks, consisting of time-ordered location points, to paths in the road network. Previous work has focused on the scenario where the location data is linearly ordered and consists of fairly dense and regular samples. In this work, we consider the \emph{multi-track map matching}, where the location data comes from different trips on the same route, each with very sparse samples. This captures the realistic scenario where users repeatedly travel on regular routes and samples are sparsely collected, either due to energy consumption constraints or because samples are only collected when the user actively uses a service. In the multi-track problem, the total set of combined locations is only partially ordered, rather than globally ordered as required by previous map-matching algorithms. We propose two methods, the iterative projection scheme and the graph Laplacian scheme, to solve the multi-track problem by using a single-track map-matching subroutine. We also propose a boosting technique which may be applied to either approach to improve the accuracy of the estimated paths. In addition, in order to deal with variable sampling rates in single-track map matching, we propose a method based on a particular regularized cost function that can be adapted for different sampling rates and measurement errors. We evaluate the effectiveness of our techniques for reconstructing tracks under several different configurations of sampling error and sampling rate.

Citations (14)

Summary

We haven't generated a summary for this paper yet.