Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Sentiment to Compute Word Similarity (1209.2341v2)

Published 11 Sep 2012 in cs.IR and cs.CL

Abstract: In this paper, we introduce a new WordNet based similarity metric, SenSim, which incorporates sentiment content (i.e., degree of positive or negative sentiment) of the words being compared to measure the similarity between them. The proposed metric is based on the hypothesis that knowing the sentiment is beneficial in measuring the similarity. To verify this hypothesis, we measure and compare the annotator agreement for 2 annotation strategies: 1) sentiment information of a pair of words is considered while annotating and 2) sentiment information of a pair of words is not considered while annotating. Inter-annotator correlation scores show that the agreement is better when the two annotators consider sentiment information while assigning a similarity score to a pair of words. We use this hypothesis to measure the similarity between a pair of words. Specifically, we represent each word as a vector containing sentiment scores of all the content words in the WordNet gloss of the sense of that word. These sentiment scores are derived from a sentiment lexicon. We then measure the cosine similarity between the two vectors. We perform both intrinsic and extrinsic evaluation of SenSim and compare the performance with other widely usedWordNet similarity metrics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.