Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Adaptive Smoothing Spline using Stochastic Differential Equations (1209.2013v1)

Published 10 Sep 2012 in math.ST, stat.CO, and stat.TH

Abstract: The smoothing spline is one of the most popular curve-fitting methods, partly because of empirical evidence supporting its effectiveness and partly because of its elegant mathematical formulation. However, there are two obstacles that restrict the use of smoothing spline in practical statistical work. Firstly, it becomes computationally prohibitive for large data sets because the number of basis functions roughly equals the sample size. Secondly, its global smoothing parameter can only provide constant amount of smoothing, which often results in poor performances when estimating inhomogeneous functions. In this work, we introduce a class of adaptive smoothing spline models that is derived by solving certain stochastic differential equations with finite element methods. The solution extends the smoothing parameter to a continuous data-driven function, which is able to capture the change of the smoothness of underlying process. The new model is Markovian, which makes Bayesian computation fast. A simulation study and real data example are presented to demonstrate the effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.