Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank 2 symmetric hyperbolic Kac-Moody algebras and Hilbert modular forms (1209.1860v1)

Published 10 Sep 2012 in math.RT and math.NT

Abstract: In this paper we study rank two symmetric hyperbolic Kac-Moody algebras H(a) and their automorphic correction in terms of Hilbert modular forms. We associate a family of H(a)'s to the quadratic field Q(p) for each odd prime p and show that there exists a chain of embeddings in each family. When p = 5, 13, 17, we show that the first H(a) in each family, i.e. H(3), H(11), H(66), is contained in a generalized Kac-Moody superalgebra whose denominator function is a Hilbert modular form given by a Borcherds product. Hence, our results provide automorphic correction for those H(a)'s. We also compute asymptotic formulas for the root multiplicities of the generalized Kac-Moody superalgebras using the fact that the exponents in the Borcherds products are Fourier coefficients of weakly holomorphic modular forms of weight 0.

Summary

We haven't generated a summary for this paper yet.