Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciding the Winner of an Arbitrary Finite Poset Game is PSPACE-Complete (1209.1750v2)

Published 8 Sep 2012 in cs.CC and cs.GT

Abstract: A poset game is a two-player game played over a partially ordered set (poset) in which the players alternate choosing an element of the poset, removing it and all elements greater than it. The first player unable to select an element of the poset loses. Polynomial time algorithms exist for certain restricted classes of poset games, such as the game of Nim. However, until recently the complexity of arbitrary finite poset games was only known to exist somewhere between NC1 and PSPACE. We resolve this discrepancy by showing that deciding the winner of an arbitrary finite poset game is PSPACE-complete. To this end, we give an explicit reduction from Node Kayles, a PSPACE-complete game in which players vie to chose an independent set in a graph.

Citations (21)

Summary

We haven't generated a summary for this paper yet.