Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wonderful resolutions and categorical crepant resolutions of singularities

Published 7 Sep 2012 in math.AG and math.CT | (1209.1564v2)

Abstract: Let $X$ be an algebraic variety with Gorenstein singularities. We define the notion of a wonderful resolution of singularities of $X$ by analogy with the theory of wonderful compactifications of semi-simple linear algebraic groups. We prove that if $X$ has rational singularities and has a wonderful resolution of singularities, then $X$ admits a categorical crepant resolution of singularities. As an immediate corollary, we get that all determinantal varieties defined by the minors of a generic square/symmetric/skew-symmetric matrix admit categorical crepant resolution of singularities. We also discuss notions of minimality for a categorical resolution of singularities and we explore some links between minimality and crepancy for such resolutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.