Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structuring Relevant Feature Sets with Multiple Model Learning (1209.0913v1)

Published 5 Sep 2012 in cs.LG

Abstract: Feature selection is one of the most prominent learning tasks, especially in high-dimensional datasets in which the goal is to understand the mechanisms that underly the learning dataset. However most of them typically deliver just a flat set of relevant features and provide no further information on what kind of structures, e.g. feature groupings, might underly the set of relevant features. In this paper we propose a new learning paradigm in which our goal is to uncover the structures that underly the set of relevant features for a given learning problem. We uncover two types of features sets, non-replaceable features that contain important information about the target variable and cannot be replaced by other features, and functionally similar features sets that can be used interchangeably in learned models, given the presence of the non-replaceable features, with no change in the predictive performance. To do so we propose a new learning algorithm that learns a number of disjoint models using a model disjointness regularization constraint together with a constraint on the predictive agreement of the disjoint models. We explore the behavior of our approach on a number of high-dimensional datasets, and show that, as expected by their construction, these satisfy a number of properties. Namely, model disjointness, a high predictive agreement, and a similar predictive performance to models learned on the full set of relevant features. The ability to structure the set of relevant features in such a manner can become a valuable tool in different applications of scientific knowledge discovery.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jun Wang (992 papers)
  2. Alexandros Kalousis (44 papers)

Summary

We haven't generated a summary for this paper yet.