2000 character limit reached
Independent families in Boolean algebras with some separation properties (1209.0177v1)
Published 2 Sep 2012 in math.LO, math.FA, and math.GN
Abstract: We prove that any Boolean algebra with the subsequential completeness property contains an independent family of size continuum. This improves a result of Argyros from the 80ties which asserted the existence of an uncountable independent family. In fact we prove it for a bigger class of Boolean algebras satisfying much weaker properties. It follows that the Stone spaces of all such Boolean algebras contains a copy of the Cech-Stone compactification of the integers and the Banach space of contnuous functions on them has $l_\infty$ as a quotient. Connections with the Grothendieck property in Banach spaces are discussed.