Papers
Topics
Authors
Recent
Search
2000 character limit reached

Upper bound on lattice stick number of knots

Published 1 Sep 2012 in math.GT | (1209.0048v1)

Abstract: The lattice stick number $s_L(K)$ of a knot $K$ is defined to be the minimal number of straight line segments required to construct a stick presentation of $K$ in the cubic lattice. In this paper, we find an upper bound on the lattice stick number of a nontrivial knot $K$, except trefoil knot, in terms of the minimal crossing number $c(K)$ which is $s_L(K) \leq 3 c(K) +2$. Moreover if $K$ is a non-alternating prime knot, then $s_L(K) \leq 3 c(K) - 4$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.