The Geometry of Hida Families and Λ-adic Hodge Theory
Abstract: We construct \Lambda-adic de Rham and crystalline analogues of Hida's ordinary \Lambda-adic etale cohomology, and by exploiting the geometry of integral models of modular curves over the cyclotomic extension of \Q_p, we prove appropriate finiteness and control theorems in each case. We then employ integral p-adic Hodge theory to prove \Lambda-adic comparison isomorphisms between our cohomologies and Hida's etale cohomology. As applications of our work, we provide a "cohomological" construction of the family of (\phi,\Gamma)-modules attached to Hida's ordinary \Lambda-adic etale cohomology by Dee, and we give a new and purely geometric proof of Hida's finitenes and control theorems. We are also able to prove refinements of theorems of Mazur-Wiles and of Ohta; in particular, we prove that there is a canonical isomorphism between the module of ordinary \Lambda-adic cuspforms and the part of the crystalline cohomology of the Igusa tower on which Frobenius acts invertibly.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.