Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Symmetry Detection and Canonical Labeling: Differences and Synergies (1208.6271v1)

Published 30 Aug 2012 in cs.DS and math.GR

Abstract: Symmetries of combinatorial objects are known to complicate search algorithms, but such obstacles can often be removed by detecting symmetries early and discarding symmetric subproblems. Canonical labeling of combinatorial objects facilitates easy equivalence checking through quick matching. All existing canonical labeling software also finds symmetries, but the fastest symmetry-finding software does not perform canonical labeling. In this work, we contrast the two problems and dissect typical algorithms to identify their similarities and differences. We then develop a novel approach to canonical labeling where symmetries are found first and then used to speed up the canonical labeling algorithms. Empirical results show that this approach outperforms state-of-the-art canonical labelers.

Citations (33)

Summary

We haven't generated a summary for this paper yet.