Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on Information Dissemination in Dynamic Networks (1208.6051v1)

Published 29 Aug 2012 in cs.DS and cs.DC

Abstract: We study lower bounds on information dissemination in adversarial dynamic networks. Initially, k pieces of information (henceforth called tokens) are distributed among n nodes. The tokens need to be broadcast to all nodes through a synchronous network in which the topology can change arbitrarily from round to round provided that some connectivity requirements are satisfied. If the network is guaranteed to be connected in every round and each node can broadcast a single token per round to its neighbors, there is a simple token dissemination algorithm that manages to deliver all k tokens to all the nodes in O(nk) rounds. Interestingly, in a paper, Dutta et al. proved an almost matching Omega(n + nk/log n) lower bound for deterministic token-forwarding algorithms that are not allowed to combine, split, or change tokens in any way. In the present paper, we extend this bound in different ways. If nodes are allowed to forward b < k tokens instead of only one token in every round, a straight-forward extension of the O(nk) algorithm disseminates all k tokens in time O(nk/b). We show that for any randomized token-forwarding algorithm, Omega(n + nk/(b2 log n log log n)) rounds are necessary. If nodes can only send a single token per round, but we are guaranteed that the network graph is c-vertex connected in every round, we show a lower bound of Omega(nk/(c log{3/2} n)), which almost matches the currently best O(nk/c) upper bound. Further, if the network is T-interval connected, a notion that captures connection stability over time, we prove that Omega(n + nk/(T2 log n)) rounds are needed. The best known upper bound in this case manages to solve the problem in O(n + nk/T) rounds. Finally, we show that even if each node only needs to obtain a delta-fraction of all the tokens for some delta in [0,1], Omega(nk delta3 log n) are still required.

Citations (38)

Summary

We haven't generated a summary for this paper yet.