Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Undecidable First-Order Theories of Affine Geometries (1208.4930v1)

Published 24 Aug 2012 in math.LO, cs.CC, and cs.LO

Abstract: Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n>1, the FO-theory of monadic expansions of (R2,\beta) is \Pi1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R2, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (Rn,\beta). While the logics are incomparable in general, over expansions of (Rn,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. This is an extended version of a publication in the proceedings of the 21st EACSL Annual Conferences on Computer Science Logic (CSL 2012).

Citations (2)

Summary

We haven't generated a summary for this paper yet.