A Simple Proof of Threshold Saturation for Coupled Vector Recursions
Abstract: Convolutional low-density parity-check (LDPC) codes (or spatially-coupled codes) have now been shown to achieve capacity on binary-input memoryless symmetric channels. The principle behind this surprising result is the threshold-saturation phenomenon, which is defined by the belief-propagation threshold of the spatially-coupled ensemble saturating to a fundamental threshold defined by the uncoupled system. Previously, the authors demonstrated that potential functions can be used to provide a simple proof of threshold saturation for coupled scalar recursions. In this paper, we present a simple proof of threshold saturation that applies to a wide class of coupled vector recursions. The conditions of the theorem are verified for the density-evolution equations of: (i) joint decoding of irregular LDPC codes for a Slepian-Wolf problem with erasures, (ii) joint decoding of irregular LDPC codes on an erasure multiple-access channel, and (iii) general protograph codes on the BEC. This proves threshold saturation for these systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.