Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Proof of Threshold Saturation for Coupled Vector Recursions (1208.4080v3)

Published 20 Aug 2012 in cs.IT and math.IT

Abstract: Convolutional low-density parity-check (LDPC) codes (or spatially-coupled codes) have now been shown to achieve capacity on binary-input memoryless symmetric channels. The principle behind this surprising result is the threshold-saturation phenomenon, which is defined by the belief-propagation threshold of the spatially-coupled ensemble saturating to a fundamental threshold defined by the uncoupled system. Previously, the authors demonstrated that potential functions can be used to provide a simple proof of threshold saturation for coupled scalar recursions. In this paper, we present a simple proof of threshold saturation that applies to a wide class of coupled vector recursions. The conditions of the theorem are verified for the density-evolution equations of: (i) joint decoding of irregular LDPC codes for a Slepian-Wolf problem with erasures, (ii) joint decoding of irregular LDPC codes on an erasure multiple-access channel, and (iii) general protograph codes on the BEC. This proves threshold saturation for these systems.

Citations (31)

Summary

We haven't generated a summary for this paper yet.