Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of a nonlinear elliptic problem with large nonlinear potential (1208.3090v1)

Published 15 Aug 2012 in math.AP

Abstract: Homogenization is studied for a nonlinear elliptic boundary-value problem with a large nonlinear potential. More specifically we are interested in the asymptotic behavior of a sequence of p-Laplacians of the form $$ -\text{div}(a(\frac{x}{\varepsilon})|Du_\varepsilon|{p-2}Du_\varepsilon) +\frac{1}{\varepsilon}V(\frac{x}{\varepsilon})|u_\varepsilon|{p-2}u_\varepsilon=f. $$ It is shown that, under a centring condition on the potential $V$, there exists a two-scale homogenized system with solution $(u, u_1)$ such that the sequence $u_\varepsilon$ of solutions converges weakly to $u$ in $W{1,p}$ and the gradients $D_x u_\varepsilon$ two-scale converges weakly to $D_x u+ D_y u_1$ in $Lp$, respectively. We characterize the limit system explicitly by means of two-scale convergence and a new convergence result.

Summary

We haven't generated a summary for this paper yet.