Papers
Topics
Authors
Recent
2000 character limit reached

Block-Relaxation Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore CPUs

Published 9 Aug 2012 in cs.DC | (1208.1975v3)

Abstract: Block iterative methods are extremely important as smoothers for multigrid methods, as preconditioners for Krylov methods, and as solvers for diagonally dominant linear systems. Developing robust and efficient algorithms suitable for current and evolving GPU and multicore CPU systems is a significant challenge. We address this issue in the case of constant-coefficient stencils arising in the solution of elliptic partial differential equations on structured 3D uniform and adaptively refined grids. Robust, highly parallel implementations of block Jacobi and chaotic block Gauss-Seidel algorithms with exact inversion of the blocks are developed using different parallelization techniques. Experimental results for NVIDIA Fermi GPUs and AMD multicore systems are presented.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.