Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduling Data Intensive Workloads through Virtualization on MapReduce based Clouds (1208.1942v1)

Published 9 Aug 2012 in cs.DC

Abstract: MapReduce has become a popular programming model for running data intensive applications on the cloud. Completion time goals or deadlines of MapReduce jobs set by users are becoming crucial in existing cloud-based data processing environments like Hadoop. There is a conflict between the scheduling MR jobs to meet deadlines and "data locality" (assigning tasks to nodes that contain their input data). To meet the deadline a task may be scheduled on a node without local input data for that task causing expensive data transfer from a remote node. In this paper, a novel scheduler is proposed to address the above problem which is primarily based on the dynamic resource reconfiguration approach. It has two components: 1) Resource Predictor: which dynamically determines the required number of Map/Reduce slots for every job to meet completion time guarantee; 2) Resource Reconfigurator: that adjusts the CPU resources while not violating completion time goals of the users by dynamically increasing or decreasing individual VMs to maximize data locality and also to maximize the use of resources within the system among the active jobs. The proposed scheduler has been evaluated against Fair Scheduler on virtual cluster built on a physical cluster of 20 machines. The results demonstrate a gain of about 12% increase in throughput of Jobs

Citations (15)

Summary

We haven't generated a summary for this paper yet.