Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point (1208.1007v2)

Published 5 Aug 2012 in math.NT and math.AG

Abstract: We prove that when all hyperelliptic curves of genus $n\geq 1$ having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational points on most of these hyperelliptic curves; for example, we show that a majority of hyperelliptic curves of genus $n\geq 3$ with a rational Weierstrass point have fewer than 20 rational points.

Summary

We haven't generated a summary for this paper yet.